
iOS Developer
Interview Handbook

Your Ultimate Guide to Crack iOS Interviews with Confidence

Written By
Anand Gaur

500+ Real Interview
Questions with Clear Explanations

​Crea
ted

 by
 A

na
nd

 G
au

r​

​Table of Contents​

​1.​​Introduction​​……..……..……..……..……..…...……..……..……..………………………..……..​​8​

​●​ ​Why This Handbook?​
​●​ ​How to Use This Handbook Effectively​
​●​ ​Levels of iOS Interviews (Fresher, Mid-level, Senior, Architect)​
​●​ ​Common Interview Patterns in Product & Service Companies​

​2.​​iOS Basics​​……..……..……..……..……..……..……..……..……..………………………….…..11​

​●​ ​History of iOS & Ecosystem​
​●​ ​Difference between iOS and Other Mobile Platforms​
​●​ ​iOS App Lifecycle (UIApplication Lifecycle)​
​●​ ​UIViewController Lifecycle​
​●​ ​Common iOS Components & Their Uses​

​3.​​Swift Programming Language​​……....……..……..……..……..……..……..……..……..…….19​

​●​ ​Basics of Swift (Variables, Constants, Data Types)​
​●​ ​Optionals in Swift​
​●​ ​Closures & Higher Order Functions​
​●​ ​Error Handling in Swift​
​●​ ​Extensions & Protocols​
​●​ ​Generics in Swift​
​●​ ​Value Type vs Reference Type​
​●​ ​ARC (Automatic Reference Counting) & Memory Management​

​4.​​Object-Oriented & Protocol-Oriented Programming​​……..…..…….……..……..…..….…..89​

​●​ ​OOP Concepts in Swift​
​●​ ​POP (Protocol-Oriented Programming) in Swift​
​●​ ​Protocols vs Abstract Classes​
​●​ ​Struct vs Class vs Enum​
​●​ ​Inheritance & Composition​

​5.​​iOS UI Development (UIKit)​​……..……...…..……..……..……..……..……..……..……..…..141​

​●​ ​Storyboards vs XIB vs Programmatic UI​
​●​ ​Auto Layout & Constraints​
​●​ ​UIKit Navigation (NavigationController, TabBar, Modal)​
​●​ ​TableView & CollectionView (Delegates, DataSource, Diffable DataSource)​
​●​ ​Gesture Recognizers & Touch Events​
​●​ ​Accessibility in iOS Apps​

​Created By :​​Anand Gaur​

​(Mobile Tech Lead - + 91 9807407363)​ ​4​

​Crea
ted

 by
 A

na
nd

 G
au

r​

​6.​​SwiftUI​​……..……..……..……..……..……..……..……..……..……………………...……..….206​

​●​ ​Introduction to SwiftUI​
​●​ ​Declarative UI vs Imperative UI (UIKit)​
​●​ ​State, Binding, ObservableObject, EnvironmentObject​
​●​ ​Navigation in SwiftUI​
​●​ ​Lists & Grids in SwiftUI​
​●​ ​Animations in SwiftUI​
​●​ ​Forms & User Input​
​●​ ​Interoperability (Using SwiftUI with UIKit)​
​●​ ​Best Practices & Performance Optimization in SwiftUI​

​7.​​Data Persistence & Storage​​……..……..……..………..……..……..……….……..…..……..274​

​●​ ​UserDefaults​
​●​ ​Keychain​
​●​ ​Core Data​
​●​ ​SQLite in iOS​
​●​ ​File System in iOS​
​●​ ​Realm Database​

​8.​​Networking in iOS​​……..……..……..……..……..……..……..……..………..……..………….322​

​●​ ​URLSession Basics​
​●​ ​REST APIs Integration​
​●​ ​Codable Protocol in Swift​
​●​ ​JSON Parsing & Error Handling​
​●​ ​Combine Framework for Networking​
​●​ ​Third-Party Libraries (Alamofire, Moya)​
​●​ ​Handling Offline Data & Caching​

​9.​​Multithreading & Concurrency​​……..……..……..……..……..……..….…..……..…..…….350​

​●​ ​GCD (Grand Central Dispatch)​
​●​ ​OperationQueue​
​●​ ​Async/Await in Swift​
​●​ ​Concurrency Best Practices​
​●​ ​Avoiding Race Conditions & Deadlocks​

​10.​​Architecture & Design Patterns​​……..……..……..…..……..……..……...…………..…….378​

​●​ ​MVC, MVVM, MVP, VIPER​
​●​ ​Coordinators in iOS​
​●​ ​Dependency Injection in Swift​
​●​ ​Common Design Patterns (Singleton, Observer, Factory, Adapter, Delegate)​
​●​ ​SOLID Principles in iOS Development​

​Created By :​​Anand Gaur​

​(Mobile Tech Lead - + 91 9807407363)​ ​5​

​Crea
ted

 by
 A

na
nd

 G
au

r​

​●​ ​Clean Architecture in iOS​
​●​ ​Composable Architecture (TCA)​

​11.​​Dependency Management​​……..……..……..……..……..……..……..….…....……..…….421​

​●​ ​Swift Package Manager (package.swift, targets, products)​
​●​ ​CocoaPods (Podfile, Podspec, Podfile.lock)​
​●​ ​Carthage (XCFrameworks, Cartfile.resolved)​
​●​ ​Static vs Dynamic frameworks; XCFrameworks​
​●​ ​Versioning & Resolution (SemVer, exact vs range)​
​●​ ​Private/Internal Packages (Git, GitHub Packages)​
​●​ ​Reproducible Builds & Lockfiles​
​●​ ​Managing Transitive Conflicts & Build Settings​
​●​ ​Resource Bundles in SPM​
​●​ ​Security & License Compliance (SCA, SBOM basics)​
​●​ ​Migrating CocoaPods → SPM​
​●​ ​Modularization with SPM for large codebases​

​12.​​Memory Management & Performance​​………….……..……..……..……..……..…..…….434​

​●​ ​ARC in Depth​
​●​ ​Strong, Weak & Unowned References​
​●​ ​Retain Cycles & Memory Leaks​
​●​ ​Instruments for Debugging & Profiling​
​●​ ​Optimizing Scrolling Performance in TableView/CollectionView​
​●​ ​Best Practices for High Performance iOS Apps​

​13.​​Testing in iOS​​……..……..……..……..……..……..……..……..……..……..……….…..….446​

​●​ ​Unit Testing with XCTest​
​●​ ​UI Testing​
​●​ ​Snapshot Testing​
​●​ ​Test Doubles (Mock, Stub, Fake)​
​●​ ​TDD & BDD in iOS​

​14.​​Advanced iOS Topics​​………….……..……..……..……..………………………...………….458​

​●​ ​Combine Framework Basics​
​●​ ​App Extensions (Widgets, SiriKit, Share Extensions)​
​●​ ​Push Notifications & APNs​
​●​ ​Deep Linking & Universal Links​

​15.​​Application Security in iOS Apps​​………….……..……..…………..……..……..….……..479​

​●​ ​Secure Coding Practices in Swift​
​●​ ​SSL Pinning & Certificate Validation​

​Created By :​​Anand Gaur​

​(Mobile Tech Lead - + 91 9807407363)​ ​6​

​Crea
ted

 by
 A

na
nd

 G
au

r​

​●​ ​Data Encryption & Decryption​
​●​ ​Handling Sensitive User Data (GDPR, HIPAA considerations)​
​●​ ​App Transport Security (ATS)​
​●​ ​Jailbreak Detection Techniques​
​●​ ​Biometric Authentication (FaceID, TouchID)​
​●​ ​OWASP Mobile Security Guidelines for iOS​

​16.​​Apple Ecosystem Knowledge​​………….……..……..……..……………....……..…..…….495​

​●​ ​App Store Submission Process​
​●​ ​App Signing & Certificates​
​●​ ​Provisioning Profiles & Certificates​
​●​ ​iOS Release Cycle​

​17.​​DevOps for iOS Developers​​………….……..……..……..……..……………………..…….507​

​●​ ​Introduction to Mobile DevOps​
​●​ ​Continuous Integration/Continuous Deployment (CI/CD) in iOS​
​●​ ​CI/CD Pipelines for iOS (Jenkins, GitHub Actions, Bitrise, CircleCI)​
​●​ ​Automated Builds & Testing​
​●​ ​Fastlane for Automation (Build, Test, Deployment)​
​●​ ​Handling Provisioning Profiles & Certificates in CI/CD​
​●​ ​Crash Reporting & Monitoring (Firebase Crashlytics, Sentry)​

​18.​​Scenario-Based Interview Questions​​………….………….....……..……..……..……..….530​

​●​ ​How do you handle offline mode in an iOS app?​
​●​ ​How to optimize large lists with images?​
​●​ ​How do you debug memory leaks in production?​
​●​ ​How to handle multiple API calls in parallel?​
​●​ ​Many more..​

​Created By :​​Anand Gaur​

​(Mobile Tech Lead - + 91 9807407363)​ ​7​

​Crea
ted

 by
 A

na
nd

 G
au

r​

​1. Introduction​

​Why This Handbook?​

​Preparing for iOS interviews can feel overwhelming because the questions vary widely​
​depending on the company and the role. One round might test your Swift language​
​fundamentals, another might focus on UIKit or SwiftUI implementation, and at senior levels​
​you’ll often be asked to discuss architecture, scalability, and system design.​

​That’s exactly why this handbook was created — to be your​​one-stop guide​​. It brings together​
​all the key concepts, common questions, and scenario-based discussions in a structured way,​
​so you don’t waste hours searching through scattered resources.​

​As a developer, I know this struggle firsthand. I always found it frustrating to prepare for​
​interviews by juggling multiple sources for questions and answers. There was no single place​
​that covered real, relevant, and repeatedly asked questions with clear explanations. That’s when​
​I decided to create this handbook — a structured and reliable guide that helps every iOS​
​developer prepare smarter and faster.​

​This handbook has been created by collecting real interview questions from the past 7–8 years,​
​gathered from multiple developers who have gone through real interview processes across​
​different companies. Over time, I documented every challenging question I encountered, not​
​only to improve myself but also to share with others so they can benefit too.​

​Here’s what you’ll find inside:​

​●​ ​Topic-wise categorized questions​​so you can prepare​​step by step (Swift, UIKit,​
​SwiftUI, Architecture, System Design, etc.).​

​●​ ​Coverage for all experience levels​​— from freshers​​who are just starting out to senior​
​developers and architects aiming for leadership roles.​

​●​ ​Practical examples and scenario-based discussions​​that reflect real-world interview​
​patterns.​

​No matter how much experience you have, this handbook will give you a clear roadmap of what​
​to expect and how to prepare, helping you approach your interviews with confidence.​

​Created By :​​Anand Gaur​

​(Mobile Tech Lead - + 91 9807407363)​ ​8​

​Crea
ted

 by
 A

na
nd

 G
au

r​

​How to Use This Handbook Effectively​

​Think of this handbook as a​​step-by-step preparation​​path​​:​

​1.​ ​Begin with the fundamentals​​– If you’re a fresher,​​start with Swift basics and iOS​
​application lifecycle. Build a strong foundation before moving on.​

​2.​ ​Progress gradually​​– Move into UI frameworks (UIKit/SwiftUI),​​then cover data​
​persistence, networking, and concurrency.​

​3.​ ​Focus on real-world problems​​– Don’t just read theory.​​Practice scenario-based​
​questions like “How would you design offline support in an app?” since interviews​
​increasingly emphasize practical problem solving.​

​4.​ ​Advance to higher-level concepts​​– For mid-level to​​senior developers, dive into​
​design patterns, architecture (MVC, MVVM, VIPER, Clean), and dependency​
​management.​

​5.​ ​Don’t ignore DevOps and Security​​– Continuous integration,​​app distribution, SSL​
​pinning, and data protection are becoming standard expectations, even in interviews.​

​6.​ ​Revise smartly​​– Use the scenario and system design​​sections as your final revision​
​before the interview.​

​By following this order, you’ll avoid the common trap of studying random topics without direction.​

​Levels of iOS Interviews​

​●​ ​Fresher / Junior (0–2 years)​
​Expect questions on Swift syntax, optionals, closures, basic UIKit/SwiftUI components,​
​simple REST API calls, and basic table/collection views.​

​●​ ​Mid-level (2–5 years)​
​Focus shifts to architectural understanding, MVVM or MVC, Core Data or Realm,​
​multithreading with GCD/OperationQueue, error handling, and performance optimization.​

​●​ ​Senior (5+ years)​
​You’ll be evaluated on how you design applications end-to-end, apply design patterns,​
​use dependency injection, optimize for performance, and mentor teams. Expect tough​
​discussions around trade-offs in architecture and scalability.​

​Created By :​​Anand Gaur​

​(Mobile Tech Lead - + 91 9807407363)​ ​9​

​Crea
ted

 by
 A

na
nd

 G
au

r​

​●​ ​Architect / Lead​
​Interviews go beyond code. You’ll be asked to design large-scale systems, integrate​
​DevOps pipelines, handle security at scale, and make decisions for modularization and​
​team productivity. Soft skills—like leadership, communication, and​
​decision-making—become as important as technical depth.​

​Common Interview Patterns in Product & Service Companies​

​●​ ​Product Companies (FAANG, unicorn startups, product-focused firms):​

​○​ ​Algorithm and data structures round (usually easy to medium level)​

​○​ ​Deep technical rounds on Swift, memory management, UIKit/SwiftUI​

​○​ ​System design and scalability discussions​

​○​ ​Culture fit or behavioral interviews​

​●​ ​Service Companies (Infosys, TCS, Accenture, Wipro, etc.):​

​○​ ​More emphasis on practical, implementation-based questions​

​○​ ​Testing knowledge of frameworks like UIKit, SwiftUI, Core Data​

​○​ ​Scenarios around API integration, error handling, offline caching​

​○​ ​Usually fewer rounds and faster decision-making process​

​Created By :​​Anand Gaur​

​(Mobile Tech Lead - + 91 9807407363)​ ​10​

​Crea
ted

 by
 A

na
nd

 G
au

r​

​2. iOS Basics​

​Q1: Can you explain the history of iOS and how it evolved over​
​time?​

​iOS is Apple’s mobile operating system that powers the iPhone, iPad, and iPod Touch. Its​
​journey started back in​​2007​​when Apple released the​​first iPhone. At that time, it was called​
​iPhone OS​​, and it mainly supported basic apps like​​Phone, Mail, Safari, and iPod.​

​Over the years, Apple has released major updates that completely transformed iOS:​

​●​ ​iPhone OS 1 (2007):​​The very first version with basic​​apps. No App Store yet.​

​●​ ​iPhone OS 2 (2008):​​Launch of the​​App Store​​, which​​revolutionized mobile apps.​

​●​ ​iPhone OS 3 (2009):​​Added​​copy-paste, MMS, push notifications​​.​

​●​ ​iOS 4 (2010):​​Renamed from iPhone OS to​​iOS​​. Introduced​​multitasking​​and​
​FaceTime.​

​●​ ​iOS 5 (2011):​​Brought​​iMessage, Notification Center,​​and iCloud​​.​

​●​ ​iOS 6 (2012):​​Introduced​​Apple Maps​​and​​Passbook​​(later​​Wallet).​

​●​ ​iOS 7 (2013):​​Major​​UI redesign​​with flat design,​​added​​Control Center​​and AirDrop.​

​●​ ​iOS 8 (2014):​​Allowed​​third-party keyboards​​, introduced​​HealthKit​​and HomeKit.​

​●​ ​iOS 9 (2015):​​Performance and battery optimizations,​​Proactive Assistant​​.​

​●​ ​iOS 10 (2016):​​Revamped iMessage, redesigned notifications,​​better Siri integration.​

​●​ ​iOS 11 (2017):​​Big iPad improvements—​​multitasking,​​drag-and-drop, Files app​​.​

​●​ ​iOS 12 (2018):​​Added​​Screen Time​​and grouped notifications.​

​●​ ​iOS 13 (2019):​​Dark Mode, Sign in with Apple,​​stronger​​privacy.​

​●​ ​iOS 14 (2020):​​Home screen widgets, App Library, picture-in-picture.​

​●​ ​iOS 15 (2021):​​SharePlay, Focus Mode,​​redesigned notifications.​

​Created By :​​Anand Gaur​

​(Mobile Tech Lead - + 91 9807407363)​ ​11​

​Crea
ted

 by
 A

na
nd

 G
au

r​

​●​ ​iOS 16 (2022):​​Lock Screen customization, iMessage edit & undo send.​

​●​ ​iOS 17 (2023):​​Contact Posters, NameDrop, interactive​​widgets.​

​●​ ​iOS 18 (2024):​​Focused on​​AI features (Apple Intelligence),​​more customization,​
​tighter macOS + visionOS integration.​

​●​ ​iOS 26 (2025, upcoming):​

​○​ ​Apple skipped iOS 19–25 and renamed it​​iOS 26​​to match​​the​​2025–2026 cycle​​.​

​○​ ​Announced at​​WWDC 2025​​, releasing September 2025 with​​iPhone 17​​.​

​○​ ​Key features:​
​■​ ​New​​“Liquid Glass” UI​​design with smooth, translucent​​effects.​
​■​ ​AI-powered upgrades like​​Live Translations, smarter​​Siri, on-device​

​intelligence.​
​■​ ​Call Screening​​to block scam/spam calls.​
​■​ ​Wireless charging improvements​​and Live Activities​​for CarPlay.​

​Q2: What is the difference between iOS and other mobile​
​platforms?​
​The two biggest mobile platforms today are​​iOS (Apple)​​and​​Android (Google)​​. Both have​
​similarities, but there are some very important differences that interviewers usually expect you to​
​highlight:​

​1. Ecosystem & Hardware Control​

​●​ ​iOS:​​Apple controls both​​hardware and software​​. iPhones,​​iPads, and iOS are​
​designed together, which gives very smooth performance, optimization, and long-term​
​updates.​

​●​ ​Android:​​Google develops the OS, but many manufacturers​​(Samsung, OnePlus,​
​Xiaomi, etc.) make hardware. This leads to​​fragmentation​​and inconsistent updates​
​across devices.​

​2. App Store vs Play Store​

​●​ ​iOS:​​Apps are distributed only through the​​Apple App​​Store​​(unless jailbroken). Apple​
​has strict​​review guidelines​​, which ensures quality​​and security but also means higher​
​approval time for developers.​

​Created By :​​Anand Gaur​

​(Mobile Tech Lead - + 91 9807407363)​ ​12​

​Crea
ted

 by
 A

na
nd

 G
au

r​

​●​ ​Android:​​Apps are available on​​Google Play Store​​and even third-party stores (like​
​Samsung Galaxy Store). Developers have more flexibility, but this also increases the risk​
​of​​malware apps​​.​

​3. Programming Languages & Frameworks​

​●​ ​iOS:​​Apps are mainly built using​​Swift​​and​​Objective-C​​,​​with UI frameworks like​​UIKit​
​and​​SwiftUI​​.​

​●​ ​Android:​​Apps are built using​​Kotlin​​and​​Java​​, with​​UI done in XML or Jetpack​
​Compose.​

​4. Design Philosophy & UI Consistency​

​●​ ​iOS:​​Apple enforces very strict​​Human Interface Guidelines​​(HIG)​​. This means apps​
​on iOS generally look and feel consistent.​

​●​ ​Android:​​Material Design is the guideline, but manufacturers​​often customize UI heavily​
​(e.g., Samsung One UI, Xiaomi MIUI). So, Android apps sometimes feel less consistent​
​across devices.​

​5. Updates & Support​

​●​ ​iOS:​​Apple devices receive​​5–6 years of software updates​​regularly. Even older​
​iPhones keep getting the latest iOS version.​

​●​ ​Android:​​Updates depend on the manufacturer. Google​​Pixel gets fast updates, but​
​most other phones stop receiving updates after​​2–3​​years​​.​

​6. Security & Privacy​

​●​ ​iOS:​​Strong focus on​​privacy and security​​. Features​​like App Tracking Transparency,​
​on-device AI, strict sandboxing, and controlled app store review process.​

​●​ ​Android:​​Google has improved security (Play Protect, sandboxing), but because of​
​openness and third-party app stores, malware risk is higher.​

​7. Customization​

​●​ ​iOS:​​More​​restricted customization​​. Users can change​​wallpapers, add widgets, and​
​now customize lock screen, but system-wide modifications are limited.​

​●​ ​Android:​​Very​​flexible​​. Users can change launchers,​​themes, icons, and even root the​
​device to deeply customize it.​

​Created By :​​Anand Gaur​

​(Mobile Tech Lead - + 91 9807407363)​ ​13​

​Crea
ted

 by
 A

na
nd

 G
au

r​

​3. Swift Programming Language​

​Q1: What is the difference between​​var​​and​​let​​in​​Swift?​
​In Swift, we use​​var​​and​​let​​to​​store values in memory​​.​​But the difference comes in how we​
​can​​change​​those values later.​

​var​​= Variable (Changeable value)​

​●​ ​If you use​​var​​, the value can be changed later.​

​Example:​

​var​​name =​​"Anand"​

​name =​​"Rahul"​ ​// Allowed​

​Here, we first stored​​"Anand"​​, then changed it to​​"Rahul"​​.​

​let​​= Constant (Fixed value)​

​●​ ​If you use​​let​​, the value cannot be changed once it’s​​assigned.​

​Example:​

​let​​pi =​​3.14159​

​pi =​​3.14​ ​// Error: Cannot change a constant​

​This makes your code​​safe​​because you know the value​​won’t change accidentally.​

​When to use​​var​​:​

​●​ ​Use it when the value is expected to change in the future.​
​●​ ​Example:​

​○​ ​User’s current location​
​○​ ​A counter in a loop​
​○​ ​A score in a game​

​When to use​​let​​:​

​●​ ​Use it when the value should stay the same.​
​●​ ​Example:​

​○​ ​Birthdate of a person​
​○​ ​API keys​

​Created By :​​Anand Gaur​

​(Mobile Tech Lead - + 91 9807407363)​ ​19​

​Crea
ted

 by
 A

na
nd

 G
au

r​

​4. Object-Oriented & Protocol-Oriented​
​Programming​

​Q1: Explain Protocol-Oriented Programming (POP). How is it​
​different from OOP?​

​Protocol-Oriented Programming (POP)?​

​●​ ​POP is a programming paradigm introduced in Swift where​​protocols​​are the primary​
​tool for defining​​interfaces and behavior​​.​

​●​ ​Focuses on​​what types can do​​, not​​what they are​​.​

​●​ ​Encourages​​composition over inheritance​​, making code​​more flexible and reusable.​

​protocol​​Drivable​​{​

​func​​drive​​()​

​}​

​extension​​Drivable​​{​

​func​​drive​​() {​

​print(​​"Driving..."​​)​

​}​

​}​

​struct​​Car​​:​​Drivable​​{}​

​struct​​Bike​​:​​Drivable​​{}​

​let​​car =​​Car​​()​

​car.drive()​ ​// Prints "Driving..."​

​Here,​​Car​​and​​Bike​​both conform to​​Drivable​​without​​sharing a common superclass.​

​Default behavior is provided via protocol extension.​

​How is POP Different from OOP?​

​Feature​ ​OOP (Object-Oriented)​ ​POP (Protocol-Oriented)​

​Main Focus​ ​Objects and their hierarchy​ ​Protocols and behavior​

​Created By :​​Anand Gaur​

​(Mobile Tech Lead - + 91 9807407363)​ ​89​

​Crea
ted

 by
 A

na
nd

 G
au

r​

​Code Reuse​ ​Inheritance (classes)​ ​Protocol extensions &​
​composition​

​Flexibility​ ​Less flexible with deep​
​inheritance​

​Highly flexible, can mix​
​behaviors easily​

​Type System​ ​Class-based reference types​ ​Works with structs, enums,​
​and classes​

​Default Implementation​ ​Must override or subclass​ ​Provided via protocol​
​extensions​

​Advantages of POP​

​1.​ ​Promotes​​composition over inheritance​​→ less tight​​coupling.​

​2.​ ​Works with​​value types​​(structs & enums), enabling​​safer and faster code.​

​3.​ ​Allows​​default implementations​​in protocol extensions.​

​4.​ ​Improves​​testability​​by decoupling behavior from concrete​​types.​

​5.​ ​Reduces problems like the​​diamond inheritance problem​​in OOP.​

​When to Use POP​

​●​ ​When you want​​shared behavior without creating a deep​​class hierarchy​​.​

​●​ ​For​​value types​​(structs/enums).​

​●​ ​When you want to​​compose multiple behaviors​​in a type​​safely.​

​Q2: Why Swift is called a Protocol-Oriented Programming (POP)​
​language​

​1. Protocols Are First-Class Citizens​

​●​ ​In Swift,​​protocols can define behavior, properties, and requirements​​.​

​●​ ​Types (structs, classes, enums) can​​conform to multiple​​protocols​​, enabling​​flexible​
​composition​​.​

​●​ ​This makes​​protocols the central way to define interfaces​​and shared behavior​​.​

​Created By :​​Anand Gaur​

​(Mobile Tech Lead - + 91 9807407363)​ ​90​

​Crea
ted

 by
 A

na
nd

 G
au

r​

​2. Default Implementations via Protocol Extensions​

​●​ ​Swift allows​​protocol extensions​​to provide default​​implementations.​

​●​ ​This means types get​​shared behavior automatically​​without needing inheritance.​

​protocol​​Greetable​​{​

​func​​greet​​()​

​}​

​extension​​Greetable​​{​

​func​​greet​​() {​

​print(​​"Hello!"​​)​

​}​

​}​

​struct​​Person​​:​​Greetable​​{}​

​Person​​().greet()​ ​// Prints "Hello!"​

​Even​​structs​​and​​enums​​can adopt these behaviors —​​something​​class-based OOP cannot​
​do as flexibly​​.​

​3. Encourages Composition Over Inheritance​

​●​ ​Traditional OOP relies heavily on​​class hierarchies​​,​​which can get rigid and complex.​

​●​ ​Swift’s POP encourages​​combining multiple protocols​​to compose functionality​
​without deep inheritance trees.​

​protocol​​Drivable​​{​​func​​drive​​() }​

​protocol​​Flyable​​{​​func​​fly​​() }​

​struct​​FlyingCar​​:​​Drivable​​,​​Flyable​​{​

​func​​drive​​() { print(​​"Driving"​​) }​

​func​​fly​​() { print(​​"Flying"​​) }​

​}​

​4. Works Seamlessly with Value Types​

​●​ ​Swift is optimized for​​structs and enums​​, not just​​classes.​

​●​ ​POP allows​​structs and enums​​to adopt protocols and​​get shared behavior, making​
​code​​safer and more efficient​​.​

​Created By :​​Anand Gaur​

​(Mobile Tech Lead - + 91 9807407363)​ ​91​

​Crea
ted

 by
 A

na
nd

 G
au

r​

​5. iOS UI Development (UIKit)​

​Q1: What are the advantages and disadvantages of using​
​Storyboards?​

​Advantages of Storyboards​

​1. Visual Representation​

​●​ ​You can see the​​entire app flow visually​​, including​​screens (ViewControllers) and​
​segues.​

​●​ ​Makes understanding navigation and UI relationships easier.​

​2. Quick Prototyping​

​●​ ​Drag-and-drop UI elements and connect actions/outlets quickly.​

​●​ ​Great for​​rapid prototyping​​or small projects.​

​3. Built-in Auto Layout Support​

​●​ ​You can configure constraints visually.​

​●​ ​Interface Builder gives immediate feedback on layout issues.​

​4. Easy Segues & Navigation​

​●​ ​Connect screens using segues without writing code.​

​●​ ​Handles navigation transitions automatically.​

​5. Less Boilerplate Code​

​●​ ​No need to manually create views in code for simple UIs.​

​Disadvantages of Storyboards​

​1. Merge Conflicts​

​●​ ​Storyboard files are XML-based.​

​●​ ​Multiple developers editing the same storyboard can easily cause​​git merge conflicts​​.​

​Created By :​​Anand Gaur​

​(Mobile Tech Lead - + 91 9807407363)​ ​141​

​Crea
ted

 by
 A

na
nd

 G
au

r​

​2. Scalability Issues​

​●​ ​Large storyboards with many screens can be​​slow to​​open​​and difficult to manage.​

​●​ ​Hard to find specific views or segues.​

​3. Lack of Reusability​

​●​ ​Reusing a screen or component across multiple storyboards requires​​copying and​
​pasting​​, not ideal for modular apps.​

​4. Tightly Coupled Code​

​●​ ​Storyboard-based UIs can make it​​harder to separate​​UI and business logic​​.​

​●​ ​Testing and programmatic modifications become more complex.​

​5. Performance Overhead​

​●​ ​Loading a very large storyboard at runtime may take slightly longer than loading​
​programmatic views.​

​Q2: What's the difference between Storyboards, XIB files, and​
​Programmatic UI?​

​1. Storyboards​

​●​ ​Definition:​​A single visual file that can contain​​multiple screens (ViewControllers) and​
​segues.​

​●​ ​Usage:​​Shows the entire app flow visually.​

​●​ ​Pros:​

​○​ ​Visual representation of navigation and UI.​

​○​ ​Quick to prototype and connect screens.​

​○​ ​Auto Layout support with Interface Builder.​

​●​ ​Cons:​

​○​ ​Hard to manage for large apps (merge conflicts, slow to load).​

​○​ ​Less reusable for components.​

​Created By :​​Anand Gaur​

​(Mobile Tech Lead - + 91 9807407363)​ ​142​

​Crea
ted

 by
 A

na
nd

 G
au

r​

​6. SwiftUI​

​Q1: What is SwiftUI and how does it differ from UIKit?​

​●​ ​SwiftUI​​is Apple’s​​declarative UI framework​​introduced​​in 2019.​

​●​ ​It allows you to​​build UIs using Swift code in a declarative​​way​​: you describe​​what​
​the UI should look like​​rather than how to construct​​it step by step.​

​●​ ​Works across​​iOS, iPadOS, macOS, watchOS, and tvOS​​.​

​●​ ​Integrates with​​data binding​​, animations, and accessibility​​automatically.​

​Key Features of SwiftUI​

​1. Declarative Syntax:​

​●​ ​You declare the UI using structs and modifiers.​

​●​ ​Example:​

​Text​​(​​"Hello, SwiftUI!"​​)​

​.font(.title)​

​.foregroundColor(.blue)​

​2. State-driven:​

​●​ ​UI automatically updates when your data changes using​​@State​​,​​@Binding​​, or​
​@ObservedObject​​.​

​3. Cross-platform:​

​●​ ​Same SwiftUI code can run on iPhone, iPad, Mac, Apple Watch, and Apple TV with​
​minimal changes.​

​4. Live Preview:​

​●​ ​Xcode provides​​instant previews​​of your UI while coding.​

​Created By :​​Anand Gaur​

​(Mobile Tech Lead - + 91 9807407363)​ ​206​

​Crea
ted

 by
 A

na
nd

 G
au

r​

​Differences Between SwiftUI and UIKit​

​Feature​ ​UIKit​ ​SwiftUI​

​Programming Style​ ​Imperative (you tell the system​​how​
​to do things)​

​Declarative (you tell the system​
​what​​you want)​

​UI Updates​ ​Manual updates required (set​
​properties, call​​setNeedsLayout​​)​

​Automatic updates using state​
​bindings​

​Cross-platform​ ​iOS only​ ​iOS, iPadOS, macOS,​
​watchOS, tvOS​

​View Hierarchy​ ​Views are classes (​​UIView​​), need​
​manual management​

​Views are structs (​​View​​),​
​lightweight and value types​

​Animations​ ​Manual (​​UIView.animate​​)​ ​Built-in with simple modifiers​
​(​​withAnimation​​)​

​Learning Curve​ ​Mature, extensive documentation,​
​more boilerplate​

​Newer, simpler syntax, but​
​limited legacy support​

​Q2: Explain the SwiftUI view lifecycle.​

​Unlike UIKit,​​SwiftUI doesn’t have explicit lifecycle​​methods​​like​​viewDidLoad​​or​
​viewWillAppear​​. Instead, it is​​state-driven and declarative​​,​​and the system decides when​
​to create, update, or destroy views.​

​1. View Creation​

​●​ ​SwiftUI views are​​structs​​, not classes.​

​●​ ​Whenever the state changes, SwiftUI​​recreates the​​view struct​​.​

​●​ ​The system​​diffs the new view with the previous one​​to update only what changed​
​(efficient rendering).​

​2. Body Evaluation​

​●​ ​The​​body​​property is​​re-evaluated whenever state changes​​.​

​Created By :​​Anand Gaur​

​(Mobile Tech Lead - + 91 9807407363)​ ​207​

​Crea
ted

 by
 A

na
nd

 G
au

r​

​Example:​

​struct​​ContentView​​:​​View​​{​

​@​​State​​private​​var​​counter =​​0​

​var​​body: some​​View​​{​

​VStack​​{​

​Text​​(​​"Count: \(counter)"​​)​

​Button​​(​​"Increment"​​) {​

​counter +=​​1​

​}​

​}​

​}​

​}​

​●​ ​Pressing the button​​updates​​counter​​, which triggers​​body re-evaluation​​.​

​3. View Updates​

​●​ ​SwiftUI​​only updates what has changed​​in the UI.​

​●​ ​This is called​​diffing​​—the framework compares old​​and new views and applies minimal​
​changes.​

​4. onAppear & onDisappear​

​●​ ​For actions that need to run when a view appears/disappears, use:​

​Text​​(​​"Hello"​​)​

​.onAppear { print(​​"View appeared"​​) }​

​.onDisappear { print(​​"View disappeared"​​) }​

​5. State-driven Lifecycle​

​●​ ​The view lifecycle is​​completely driven by state changes​​.​

​●​ ​Views​​don’t persist in memory​​unless referenced; they’re​​recreated as needed.​

​6. Environmental & Observable Objects​

​●​ ​Views can subscribe to​​@ObservedObject​​,​​@StateObject​​,​​@EnvironmentObject​​.​

​●​ ​When data in these objects changes,​​SwiftUI triggers​​a view refresh​​automatically.​

​Created By :​​Anand Gaur​

​(Mobile Tech Lead - + 91 9807407363)​ ​208​

​Crea
ted

 by
 A

na
nd

 G
au

r​

​Q3: What are ViewBuilder and @ViewBuilder used for?​

​ViewBuilder​​:​

​●​ ​ViewBuilder​​is a​​special type of function builder​​in SwiftUI.​

​●​ ​It allows you to​​combine multiple views​​inside a closure​​and return them as a single​
​view.​

​●​ ​Without​​ViewBuilder​​, you’d have to wrap everything​​manually, which would be messy.​

​Example:​

​VStack​​{​

​Text​​(​​"Hello"​​)​

​Text​​(​​"World"​​)​

​}​

​Here, the closure after​​VStack { ... }​​uses​​@ViewBuilder​​under the hood, so you can​
​write multiple views without wrapping them in an array.​

​@ViewBuilder:​

​●​ ​@ViewBuilder​​is an​​attribute​​you put on a function​​parameter or property.​

​●​ ​It tells SwiftUI: “This closure will return multiple views, and I’ll combine them into one​
​using ViewBuilder rules.”​

​Example:​
​struct​​MyCustomView​​<​​Content​​:​​View​​>:​​View​​{​

​let​​content: () ->​​Content​ ​// normal closure​

​var​​body: some​​View​​{​

​VStack​​{​

​content()​

​}​

​}​

​}​

​Q4: What does the​​@main​​attribute do in a SwiftUI​​app?​

​The​​@main​​attribute in SwiftUI marks the​​entry point of your app​​.​

​Created By :​​Anand Gaur​

​(Mobile Tech Lead - + 91 9807407363)​ ​209​

​Crea
ted

 by
 A

na
nd

 G
au

r​

​8. Networking in iOS​

​Q1: What is URLSession? How is it different from the deprecated​
​NSURLConnection?​

​●​ ​URLSession​​is Apple’s​​high-level networking API​​used​​to make HTTP requests (GET,​
​POST, etc.), download/upload files, and manage background transfers.​

​●​ ​It’s built on top of lower-level sockets but provides an​​easy, modern, async-friendly​
​API​​.​

​●​ ​It supports:​
​○​ ​Data tasks → simple requests (e.g., fetch JSON).​
​○​ ​Download tasks → large files (auto-saves to disk).​
​○​ ​Upload tasks → send files.​
​○​ ​Background tasks → run even if the app is suspended.​

​Difference between URLSession and NSURLConnection​

​Apple deprecated​​NSURLConnection​​in favor of​​URLSession​​.​​Here’s why:​

​Feature​ ​NSURLConnection​ ​URLSession​

​API Style​ ​Older, delegate-heavy​ ​Modern, supports completion handlers +​
​async/await​

​Background​
​Transfers​

​❌ Not supported​ ​✅ Built-in with​
​URLSessionConfiguration.background​

​Task Types​ ​Limited (basic requests​
​only)​

​Multiple:​​dataTask​​,​​downloadTask​​,​
​uploadTask​​,​​streamTask​

​Efficiency​ ​Less efficient, no​
​fine-grained config​

​More efficient, configurable caching, cookies,​
​timeouts​

​Reusability​ ​One connection per​
​request​

​Sessions can be reused across multiple tasks​

​Current Status​ ​Deprecated since iOS 9​ ​Standard networking API in iOS, macOS,​
​watchOS, tvOS​

​Created By :​​Anand Gaur​

​(Mobile Tech Lead - + 91 9807407363)​ ​322​

​Crea
ted

 by
 A

na
nd

 G
au

r​

​11. Dependency Management​

​Q1: What is Swift Package Manager? What advantages does it​
​have over other dependency managers?​

​●​ ​It’s Apple’s​​official tool​​for managing dependencies​​and sharing code.​

​●​ ​Built directly into​​Xcode​​and the Swift toolchain.​

​●​ ​Lets you add, update, and use libraries without needing extra tools like CocoaPods or​
​Carthage.​

​You describe your package in a​​Package.swift​​file,​​and SPM handles downloading,​
​compiling, and linking everything for you.​

​Advantages of SPM over other dependency managers​

​1. Official and Native​

​●​ ​Built by Apple, fully supported in Xcode.​

​●​ ​No need to install extra tools (unlike CocoaPods or Carthage).​

​2. Lightweight & Fast​

​●​ ​Direct integration with the Swift compiler.​

​●​ ​Faster dependency resolution and build times compared to CocoaPods.​

​3. Cross-Platform​

​●​ ​Works not only for iOS/macOS but also for​​Linux and​​server-side Swift​​projects.​

​●​ ​CocoaPods and Carthage are mostly iOS/macOS focused.​

​4. Simple Setup​

​●​ ​Just add dependencies via Xcode’s “Swift Packages” menu or edit​​Package.swift​​.​

​●​ ​No messing around with Xcode project files (CocoaPods modifies them).​

​Created By :​​Anand Gaur​

​(Mobile Tech Lead - + 91 9807407363)​ ​421​

​Crea
ted

 by
 A

na
nd

 G
au

r​

​5. No Extra Files​

​●​ ​Doesn’t generate bulky​​Pods​​directories or​​.xcworkspace​​.​

​●​ ​Keeps your repo cleaner.​

​6. Better Git Integration​

​●​ ​Dependencies are fetched directly from Git repositories.​

​●​ ​Supports versioning using​​semantic versioning​​(​​1.2.3​​).​

​7. Future Proof​

​●​ ​Apple continues to improve SPM (e.g., binary dependencies, resources support).​

​●​ ​More and more third-party libraries are shifting to SPM-first.​

​Q2: What’s the difference between​​.library()​​and​
​.executable()​​products?​

​When you define a Swift package in​​Package.swift​​,​​you specify​​products​​.​
​Products are what your package actually exposes to the outside world (like apps or other​

​packages).​

​There are mainly two kinds:​​library​​and​​executable​​.​

​.library()​​Product​

​●​ ​What it is:​
​A collection of Swift code that can be reused by other packages or apps.​

​●​ ​Purpose:​
​To provide​​reusable functionality​​(e.g., helper functions,​​UI components, networking​

​layer).​

​●​ ​Output:​
​Doesn’t run by itself, it just gives you Swift modules/frameworks to import.​

​.executable()​​Product​

​●​ ​What it is:​
​A Swift program that can be run directly (like a command-line tool or even the main​

​Created By :​​Anand Gaur​

​(Mobile Tech Lead - + 91 9807407363)​ ​422​

​Crea
ted

 by
 A

na
nd

 G
au

r​

​17. DevOps for iOS Developers​

​Q1: What is Mobile DevOps? How is it different from traditional​
​web DevOps?​

​●​ ​Mobile DevOps​​is the practice of applying​​DevOps principles​​specifically to​​mobile​
​app development​​.​

​●​ ​It focuses on​​continuous integration, delivery, and​​monitoring​​for mobile apps across​
​iOS and Android platforms.​

​●​ ​The goal is to​​release high-quality apps faster​​, with​​automated testing, deployment,​
​and feedback loops.​

​Key Components of Mobile DevOps​

​Component​ ​Description​

​Continuous Integration (CI)​ ​Automatically build and test apps whenever code changes​
​are committed.​

​Continuous Delivery /​
​Deployment (CD)​

​Automate deployment of apps to testers (TestFlight, Play​
​Store beta) or production.​

​Automated Testing​ ​Unit, UI, and integration tests run automatically to catch​
​bugs early.​

​Monitoring & Analytics​ ​Track app crashes, performance, and user behavior in​
​real-time.​

​Release Management​ ​Plan releases, manage versions, and handle app store​
​submissions efficiently.​

​How Mobile DevOps Differs from Traditional Web DevOps​

​Aspect​ ​Mobile DevOps​ ​Web DevOps​

​Deployment​
​Target​

​App Store (iOS) / Play Store​
​(Android)​

​Web servers / cloud platforms​

​Release Cycle​ ​Longer due to app store review and​
​approvals​

​Faster, can push live immediately​

​Created By :​​Anand Gaur​

​(Mobile Tech Lead - + 91 9807407363)​ ​507​

​Crea
ted

 by
 A

na
nd

 G
au

r​

​Testing​
​Environment​

​Multiple devices, OS versions,​
​screen sizes​

​Browsers & server environments​

​Installation​ ​User must download/update app​ ​Users access via browser, no​
​install needed​

​Monitoring​ ​Crash reporting, app performance​
​metrics​

​Server logs, uptime, response​
​times​

​Key Challenges in Mobile DevOps​

​1. Multiple Platforms​

​●​ ​iOS and Android need separate pipelines and tools.​

​2. App Store Constraints​

​●​ ​Deployment is slower due to​​review processes​​.​

​3. Device Fragmentation​

​●​ ​Need to test on​​different devices, OS versions, screen​​sizes​​.​

​4. Version Management​

​●​ ​Manage multiple​​app versions simultaneously​​for testing​​and production.​

​Q2: What is the difference between DevOps, CI, and CD in the​
​context of mobile development?​

​1. DevOps in Mobile Development​

​●​ ​DevOps​​is a​​culture and set of practices​​that combines​​development and operations​
​to deliver apps faster and more reliably.​

​●​ ​In mobile, DevOps covers​​everything from code commits​​to deployment and​
​monitoring​​on iOS and Android.​

​●​ ​Goals:​​automation, collaboration, feedback loops, and faster releases​​.​

​Created By :​​Anand Gaur​

​(Mobile Tech Lead - + 91 9807407363)​ ​508​

​Crea
ted

 by
 A

na
nd

 G
au

r​

​18. Scenario-Based Interview Questions​

​Q1: Users report that your app crashes randomly on older​
​devices while scrolling a​​UITableView​​. How would you​
​investigate and resolve this crash?​

​Reproduce the crash​

​●​ ​Test on older devices or low-memory simulators to see the problem firsthand.​

​Check crash logs​

​●​ ​Use Xcode Organizer, Crashlytics, or Sentry to get stack traces and error details.​

​Identify memory issues​

​●​ ​Use​​Instruments → Allocations & Leaks​​to detect high​​memory usage, leaks, or retain​
​cycles.​

​Optimize table view performance​

​●​ ​Reuse cells properly with​​dequeueReusableCell​​.​

​●​ ​Avoid heavy computations or image processing in​​cellForRowAt​​.​

​●​ ​Load images asynchronously or lazily.​

​Fix retain cycles​

​●​ ​Check closures capturing​​self​​strongly and use​​[weak​​self]​​or​​[unowned self]​
​where needed.​

​Test thoroughly​

​●​ ​Verify on multiple devices, iOS versions, and simulate memory warnings to ensure the​
​fix works.​

​Created By :​​Anand Gaur​

​(Mobile Tech Lead - + 91 9807407363)​ ​530​

​Crea
ted

 by
 A

na
nd

 G
au

r​

​Q2: Your iOS app takes ~8 seconds to launch, affecting user​
​experience. How would you optimize app launch time?​

​Measure launch time​

​●​ ​Use​​Instruments → Time Profiler​​or​​os_signpost​​to​​identify slow parts.​

​Move heavy work off main thread​

​●​ ​Run network calls, database queries, or JSON parsing asynchronously.​

​Lazy load resources​

​●​ ​Load images, views, or data only when needed instead of during launch.​

​Optimize storyboard/XIB​

​●​ ​Reduce deep view hierarchies and unnecessary UI elements.​

​●​ ​Consider lightweight views or SwiftUI for faster layout rendering.​

​Cache frequently used data​

​●​ ​Use​​UserDefaults​​,​​Core Data​​, or local files to avoid​​fetching from network​
​repeatedly.​

​Preload only essential resources​

​●​ ​Delay non-critical initializations to after app launch.​

​Q3: A view controller is not deallocated after navigation, causing​
​memory leaks. How would you handle this?​

​Detect retain cycles​

​●​ ​Use​​Xcode Memory Graph Debugger​​or​​Instruments → Leaks​​.​

​Identify strong reference cycles​

​●​ ​Look for closures or delegates holding a strong reference to​​self​​.​

​Created By :​​Anand Gaur​

​(Mobile Tech Lead - + 91 9807407363)​ ​531​

