R o4

10S Developer
Interview Handbook

Your Ultimate Guide to Crack iOS Interviews with Confidence

500+ Real Interview
Questions with Clear Explanations

Written By
Anand Gaur

Table of Contents

IR e Yo 1o 4o o 8

Why This Handbook?

How to Use This Handbook Effectively

Levels of iOS Interviews (Fresher, Mid-level, Senior, Architect)
Common Interview Patterns in Product & Service Companies

1@ XS = 7= Yo 1o 11

History of iOS & Ecosystem

Difference between iOS and Other Mobile Platforms
iOS App Lifecycle (UlApplication Lifecycle)
UlViewController Lifecycle

Common iOS Components & Their Uses

3. Swift Programming LANGUAGE . ..vveeireirueemremseensmrsannssirannssmamsssssssmssssssamssssernsssresssarsennns 19

Basics of Swift (Variables, Constants, Data Types)

Optionals in Swift

Closures & Higher Order Functions

Error Handling in Swift

Extensions & Protocols

Generics in Swift

Value Type vs Reference Type

ARC (Automatic Reference Counting) & Memory Management

4. Object-Oriented & Protocol-Oriented Programmingcccceevevorricrurmsserararmesassrsanase 89

OOP Concepts in Swift

POP (Protocol-Oriented Programming) in Swift
Protocols vs Abstract Classes

Struct vs Class vs Enum

Inheritance & Composition

5.1i0S Ul DeVvelopment (ULKIt)cccie o iiiieriiserreiseeresasnnnressnnnsssssnnssarannssssmnnnssrannnnns 141

Storyboards vs XIB vs Programmatic Ul

Auto Layout & Constraints

UIKit Navigation (NavigationController, TabBar, Modal)

TableView & CollectionView (Delegates, DataSource, Diffable DataSource)
Gesture Recognizers & Touch Events

Accessibility in iOS Apps

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 4

6. SWIFtULeeeee e e e e 206

Introduction to SwiftUl

Declarative Ul vs Imperative Ul (UIKit)

State, Binding, ObservableObject, EnvironmentObject
Navigation in SwiftUl

Lists & Grids in SwiftUl

Animations in SwiftUl

Forms & User Input

Interoperability (Using SwiftUl with UIKit)

Best Practices & Performance Optimization in SwiftUl

7. Data PersistencCe & StOra0e . cviiiieiriiieriiierreiseemreisennstrasnnssirnnnsrssanrassnnressnsnrssnnne 274

UserDefaults
Keychain

Core Data

SQLite in iOS

File System in iOS
Realm Database

8. NetWOrKIiNG iN TOS .ot ie it e it e e reasn e rrann e s sarannessaransserannsnrasnnrmeannnnnsrnnns 322

URLSession Basics

REST APIs Integration

Codable Protocol in Swift

JSON Parsing & Error Handling
Combine Framework for Networking
Third-Party Libraries (Alamofire, Moya)
Handling Offline Data & Caching

9. Multithreading & CONCUITENCY ..cciiuieietieie et teaeeerraanreranrmreasnnrmrasrssnrnrrssnnrnrannsrannns 350

GCD (Grand Central Dispatch)
OperationQueue

Async/Await in Swift

Concurrency Best Practices

Avoiding Race Conditions & Deadlocks

10. Architecture & DesSign Patternscccccivieierriiierriierrrieesrsinsesresssmnssssssssnnsmrsnnnees 378

MVC, MVVM, MVP, VIPER

Coordinators in iOS

Dependency Injection in Swift

Common Design Patterns (Singleton, Observer, Factory, Adapter, Delegate)
SOLID Principles in iOS Development

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 5

e Clean Architecture in iOS
e Composable Architecture (TCA)

11. Dependency Managementccccocvoiiriciersre i s s s rarrm s s s s e serrrm s samsrnsnnns 421
e Swift Package Manager (package.swift, targets, products)
e CocoaPods (Podfile, Podspec, Podfile.lock)
e Carthage (XCFrameworks, Cartfile.resolved)
e Static vs Dynamic frameworks; XCFrameworks
e Versioning & Resolution (SemVer, exact vs range)
e Private/Internal Packages (Git, GitHub Packages)
e Reproducible Builds & Lockfiles
e Managing Transitive Conflicts & Build Settings
e Resource Bundles in SPM
e Security & License Compliance (SCA, SBOM basics)
e Migrating CocoaPods — SPM
e Modularization with SPM for large codebases
12. Memory Management & Performanceccccciiieiiiiiiiiiicnine e 434
e ARC in Depth
e Strong, Weak & Unowned References
e Retain Cycles & Memory Leaks
e Instruments for Debugging & Profiling
e Optimizing Scrolling Performance in TableView/CollectionView
e Best Practices for High Performance iOS Apps
13. Testing iNTOS ... r v e r e s e s s s s rr e s e e e nrn e 446
e Unit Testing with XCTest
e Ul Testing
e Snapshot Testing
e Test Doubles (Mock, Stub, Fake)
e TDD & BDD iniOS
14. AAvanced iOS TOPICS -iucvuriiiiiic i i i et e ressasaasaasaasaasaasansansansassrnnsansnnnnes 458
e Combine Framework Basics
e App Extensions (Widgets, SiriKit, Share Extensions)
e Push Notifications & APNs
e Deep Linking & Universal Links

15. Application SeCUrity IN iOS A IS -tvviiuummeiinerrrirerrraanrerasnnneerrarnsrrrarerrrasnrrrassesnnes 479

e Secure Coding Practices in Swift
e SSL Pinning & Certificate Validation

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 6

Data Encryption & Decryption

Handling Sensitive User Data (GDPR, HIPAA considerations)
App Transport Security (ATS)

Jailbreak Detection Techniques

Biometric Authentication (FacelD, TouchID)

OWASP Mobile Security Guidelines for iOS

16. Apple Ecosystem Knowleddecccoiiiiiiiii s s s v s s s e e e e 495

App Store Submission Process
App Signing & Certificates
Provisioning Profiles & Certificates
iOS Release Cycle

17. DeVOPS fOr IOS DEVEIOPEIS ..vtruiuunnrineerrrrssrrerersrsssssssssssssesssnnssssesssnnssssesssnrssnnns 507

Introduction to Mobile DevOps

Continuous Integration/Continuous Deployment (CI/CD) in iOS
CI/CD Pipelines for iOS (Jenkins, GitHub Actions, Bitrise, CircleCl)
Automated Builds & Testing

Fastlane for Automation (Build, Test, Deployment)

Handling Provisioning Profiles & Certificates in CI/CD

Crash Reporting & Monitoring (Firebase Crashlytics, Sentry)

18. Scenario-Based Interview QUESTIONSvvveevrivieereisnerimmimrnsrssrisnnssesssssnsmmnssesnrennns 530

How do you handle offline mode in an iOS app?
How to optimize large lists with images?

How do you debug memory leaks in production?
How to handle multiple API calls in parallel?
Many more..

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 7

1. Introduction

Why This Handbook?

Preparing for iOS interviews can feel overwhelming because the questions vary widely
depending on the company and the role. One round might test your Swift language
fundamentals, another might focus on UIKit or SwiftUl implementation, and at senior levels
you'll often be asked to discuss architecture, scalability, and system design.

That’s exactly why this handbook was created — to be your one-stop guide. It brings together
all the key concepts, common questions, and scenario-based discussions in a structured way,
so you don’t waste hours searching through scattered resources.

As a developer, | know this struggle firsthand. | always found it frustrating to prepare for
interviews by juggling multiple sources for questions and answers. There was no single place
that covered real, relevant, and repeatedly asked questions with clear explanations. That's when
| decided to create this handbook — a structured and reliable guide that helps every iOS
developer prepare smarter and faster.

This handbook has been created by collecting real interview questions from the past 7-8 years,
gathered from multiple developers who have gone through real interview processes across
different companies. Over time, | documented every challenging question | encountered, not
only to improve myself but also to share with others so they can benefit too.

Here’s what you'll find inside:

e Topic-wise categorized questions so you can prepare step by step (Swift, UIKit,
SwiftUl, Architecture, System Design, etc.).

e Coverage for all experience levels — from freshers who are just starting out to senior
developers and architects aiming for leadership roles.

e Practical examples and scenario-based discussions that reflect real-world interview
patterns.

No matter how much experience you have, this handbook will give you a clear roadmap of what
to expect and how to prepare, helping you approach your interviews with confidence.

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 8

How to Use This Handbook Effectively

Think of this handbook as a step-by-step preparation path:

1.

Begin with the fundamentals — If you're a fresher, start with Swift basics and iOS
application lifecycle. Build a strong foundation before moving on.

Progress gradually — Move into Ul frameworks (UIKit/SwiftUl), then cover data
persistence, networking, and concurrency.

Focus on real-world problems — Don'’t just read theory. Practice scenario-based
questions like “How would you design offline support in an app?” since interviews
increasingly emphasize practical problem solving.

Advance to higher-level concepts — For mid-level to senior developers, dive into
design patterns, architecture (MVC, MVVM, VIPER, Clean), and dependency
management.

Don’t ignore DevOps and Security — Continuous integration, app distribution, SSL
pinning, and data protection are becoming standard expectations, even in interviews.

Revise smartly — Use the scenario and system design sections as your final revision
before the interview.

By following this order, you’ll avoid the common trap of studying random topics without direction.

Levels of iOS Interviews

Fresher / Junior (0-2 years)
Expect questions on Swift syntax, optionals, closures, basic UIKit/SwiftUl components,
simple REST API calls, and basic table/collection views.

Mid-level (2-5 years)
Focus shifts to architectural understanding, MVVM or MVC, Core Data or Realm,
multithreading with GCD/OperationQueue, error handling, and performance optimization.

Senior (5+ years)

You'll be evaluated on how you design applications end-to-end, apply design patterns,
use dependency injection, optimize for performance, and mentor teams. Expect tough
discussions around trade-offs in architecture and scalability.

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 9

e Architect/Lead
Interviews go beyond code. You'll be asked to design large-scale systems, integrate
DevOps pipelines, handle security at scale, and make decisions for modularization and
team productivity. Soft skills—like leadership, communication, and
decision-making—become as important as technical depth.

Common Interview Patterns in Product & Service Companies
e Product Companies (FAANG, unicorn startups, product-focused firms):
o Algorithm and data structures round (usually easy to medium level)
o Deep technical rounds on Swift, memory management, UIKit/SwiftUl
o System design and scalability discussions
o Culture fit or behavioral interviews
e Service Companies (Infosys, TCS, Accenture, Wipro, etc.):
o More emphasis on practical, implementation-based questions
o Testing knowledge of frameworks like UIKit, SwiftUl, Core Data
o Scenarios around API integration, error handling, offline caching

o Usually fewer rounds and faster decision-making process

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 1 O

2. i0S Basics

Q1: Can you explain the history of iOS and how it evolved over
time?

iOS is Apple’s mobile operating system that powers the iPhone, iPad, and iPod Touch. Its
journey started back in 2007 when Apple released the first iPhone. At that time, it was called
iPhone OS, and it mainly supported basic apps like Phone, Mail, Safari, and iPod.

Over the years, Apple has released major updates that completely transformed iOS:

iPhone OS 1 (2007): The very first version with basic apps. No App Store yet.
iPhone OS 2 (2008): Launch of the App Store, which revolutionized mobile apps.
iPhone OS 3 (2009): Added copy-paste, MMS, push notifications.

iOS 4 (2010): Renamed from iPhone OS to iOS. Introduced multitasking and
FaceTime.

iOS 5 (2011): Brought iMessage, Notification Center, and iCloud.

iOS 6 (2012): Introduced Apple Maps and Passbook (later Wallet).

iOS 7 (2013): Major Ul redesign with flat design, added Control Center and AirDrop.
iOS 8 (2014): Allowed third-party keyboards, introduced HealthKit and HomeKit.
iOS 9 (2015): Performance and battery optimizations, Proactive Assistant.

iOS 10 (2016): Revamped iMessage, redesigned notifications, better Siri integration.
iOS 11 (2017): Big iPad improvements—multitasking, drag-and-drop, Files app.
iOS 12 (2018): Added Screen Time and grouped notifications.

iOS 13 (2019): Dark Mode, Sign in with Apple, stronger privacy.

iOS 14 (2020): Home screen widgets, App Library, picture-in-picture.

iOS 15 (2021): SharePlay, Focus Mode, redesigned notifications.

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 1 1

e iOS 16 (2022): Lock Screen customization, iMessage edit & undo send.
e i0OS 17 (2023): Contact Posters, NameDrop, interactive widgets.

e iOS 18 (2024): Focused on Al features (Apple Intelligence), more customization,
tighter macOS + visionOS integration.

e iOS 26 (2025, upcoming):
o Apple skipped iOS 19-25 and renamed it iOS 26 to match the 2025-2026 cycle.
o Announced at WWDC 2025, releasing September 2025 with iPhone 17.

o Key features:
m New “Liquid Glass” Ul design with smooth, translucent effects.
m Al-powered upgrades like Live Translations, smarter Siri, on-device
intelligence.
Call Screening to block scam/spam calls.
Wireless charging improvements and Live Activities for CarPlay.

Q2: What is the difference between iOS and other mobile

platforms?
The two biggest mobile platforms today are iOS (Apple) and Android (Google). Both have

similarities, but there are some very important differences that interviewers usually expect you to
highlight:

1. Ecosystem & Hardware Control

e iOS: Apple controls both hardware and software. iPhones, iPads, and iOS are
designed together, which gives very smooth performance, optimization, and long-term
updates.

e Android: Google develops the OS, but many manufacturers (Samsung, OnePlus,
Xiaomi, etc.) make hardware. This leads to fragmentation and inconsistent updates
across devices.

2. App Store vs Play Store

e iOS: Apps are distributed only through the Apple App Store (unless jailbroken). Apple
has strict review guidelines, which ensures quality and security but also means higher
approval time for developers.

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 1 2

e Android: Apps are available on Google Play Store and even third-party stores (like
Samsung Galaxy Store). Developers have more flexibility, but this also increases the risk
of malware apps.

3. Programming Languages & Frameworks

e i0OS: Apps are mainly built using Swift and Objective-C, with Ul frameworks like UIKit
and SwiftUl.

e Android: Apps are built using Kotlin and Java, with Ul done in XML or Jetpack
Compose.

4. Design Philosophy & Ul Consistency

e i0S: Apple enforces very strict Human Interface Guidelines (HIG). This means apps
on iOS generally look and feel consistent.

e Android: Material Design is the guideline, but manufacturers often customize Ul heavily
(e.g., Samsung One Ul, Xiaomi MIUI). So, Android apps sometimes feel less consistent
across devices.

5. Updates & Support

e iOS: Apple devices receive 5-6 years of software updates regularly. Even older
iPhones keep getting the latest iOS version.

e Android: Updates depend on the manufacturer. Google Pixel gets fast updates, but
most other phones stop receiving updates after 2-3 years.

6. Security & Privacy

e i0OS: Strong focus on privacy and security. Features like App Tracking Transparency,
on-device Al, strict sandboxing, and controlled app store review process.

e Android: Google has improved security (Play Protect, sandboxing), but because of
openness and third-party app stores, malware risk is higher.

7. Customization

e iOS: More restricted customization. Users can change wallpapers, add widgets, and
now customize lock screen, but system-wide modifications are limited.

e Android: Very flexible. Users can change launchers, themes, icons, and even root the
device to deeply customize it.

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 1 3

3. Swift Programming Language

Q1: What is the difference between var and let in Swift?

In Swift, we use var and let to store values in memory. But the difference comes in how we
can change those values later.

var = Variable (Changeable value)
e If you use var, the value can be changed later.

Example:

Here, we first stored "Anand", then changed it to "Rahul”.

let = Constant (Fixed value)
e If you use let, the value cannot be changed once it’'s assigned.

Example:

This makes your code safe because you know the value won’t change accidentally.
When to use var:

e Use it when the value is expected to change in the future.
e Example:

o User’s current location

o A counterin a loop

o A scoreinagame

When to use let:

e Use it when the value should stay the same.

e Example:
o Birthdate of a person
o API keys

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 1 9

4. Object-Oriented & Protocol-Oriented
Programming

Q1: Explain Protocol-Oriented Programming (POP). How is it
different from OOP?

Protocol-Oriented Programming (POP)?

e POP is a programming paradigm introduced in Swift where protocols are the primary
tool for defining interfaces and behavior.

e Focuses on what types can do, not what they are.

e Encourages composition over inheritance, making code more flexible and reusable.

Drivable {
drive()

Drivable {
drive() {
print(

Car: Drivable {}
Bike: Drivable {}

car = Car()
car.drive() // Prints "Driving..."

Here, Car and Bike both conform to Drivable without sharing a common superclass.
Default behavior is provided via protocol extension.

How is POP Different from OOP?

Feature OOP (Object-Oriented) POP (Protocol-Oriented)

Main Focus Objects and their hierarchy Protocols and behavior

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 89

Code Reuse

Inheritance (classes)

Protocol extensions &

composition
Flexibility Less flexible with deep Highly flexible, can mix
inheritance behaviors easily
Type System Class-based reference types | Works with structs, enums,

and classes

Default Implementation

Must override or subclass

Provided via protocol
extensions

Advantages of POP

1. Promotes composition over inheritance — less tight coupling.

2. Works with value types (structs & enums), enabling safer and faster code.

3. Allows default implementations in protocol extensions.

4. Improves testability by decoupling behavior from concrete types.

5. Reduces problems like the diamond inheritance problem in OOP.

When to Use POP

e When you want shared behavior without creating a deep class hierarchy.

e For value types (structs/enums).

e When you want to compose multiple behaviors in a type safely.

Q2: Why Swift is called a Protocol-Oriented Programming (POP)

language

1. Protocols Are First-Class Citizens

e In Swift, protocols can define behavior, properties, and requirements.

e Types (structs, classes, enums) can conform to multiple protocols, enabling flexible

composition.

e This makes protocols the central way to define interfaces and shared behavior.

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363)

90

2. Default Implementations via Protocol Extensions

e Swift allows protocol extensions to provide default implementations.

e This means types get shared behavior automatically without needing inheritance.

Greetable {
greet()

Greetable {

greet() {
print(

Person: Greetable {}
Person().greet() // Prints "Hello!"

Even structs and enums can adopt these behaviors — something class-based OOP cannot
do as flexibly.

3. Encourages Composition Over Inheritance
e Traditional OOP relies heavily on class hierarchies, which can get rigid and complex.

e Swift's POP encourages combining multiple protocols to compose functionality
without deep inheritance trees.

Drivable { drive() }
Flyable { fly() }

FlyingCar: Drivable, Flyable {

drive() { print()}
fly() { print()}

4. Works Seamlessly with Value Types

e Swift is optimized for structs and enums, not just classes.
e POP allows structs and enums to adopt protocols and get shared behavior, making

code safer and more efficient.

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 9 1

5. i0S Ul Development (UIKit)

Q1: What are the advantages and disadvantages of using
Storyboards?

Advantages of Storyboards
1. Visual Representation

e You can see the entire app flow visually, including screens (ViewControllers) and
segues.

e Makes understanding navigation and Ul relationships easier.
2. Quick Prototyping

e Drag-and-drop Ul elements and connect actions/outlets quickly.

e Great for rapid prototyping or small projects.
3. Built-in Auto Layout Support

e You can configure constraints visually.

e Interface Builder gives immediate feedback on layout issues.
4. Easy Segues & Navigation

e Connect screens using segues without writing code.

e Handles navigation transitions automatically.
5. Less Boilerplate Code

e No need to manually create views in code for simple Uls.
Disadvantages of Storyboards
1. Merge Conflicts

e Storyboard files are XML-based.

e Multiple developers editing the same storyboard can easily cause git merge conflicts.

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 1 4 1

2. Scalability Issues
e Large storyboards with many screens can be slow to open and difficult to manage.
e Hard to find specific views or segues.

3. Lack of Reusability

e Reusing a screen or component across multiple storyboards requires copying and
pasting, not ideal for modular apps.

4. Tightly Coupled Code

e Storyboard-based Uls can make it harder to separate Ul and business logic.

e Testing and programmatic modifications become more complex.
5. Performance Overhead

e Loading a very large storyboard at runtime may take slightly longer than loading
programmatic views.

Q2: What's the difference between Storyboards, XIB files, and
Programmatic Ul?

1. Storyboards

e Definition: A single visual file that can contain multiple screens (ViewControllers) and
segues.

e Usage: Shows the entire app flow visually.

e Pros:
o Visual representation of navigation and Ul.
o Quick to prototype and connect screens.

o Auto Layout support with Interface Builder.

o Hard to manage for large apps (merge conflicts, slow to load).

o Less reusable for components.

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 1 42

6. SwiftUl

Q1: What is SwiftUl and how does it differ from UIKit?

e SwiftUl is Apple’s declarative Ul framework introduced in 2019.

e |t allows you to build Uls using Swift code in a declarative way: you describe what
the Ul should look like rather than how to construct it step by step.

e \Works across i0S, iPadOS, macOS, watchOS, and tvOS.
e |Integrates with data binding, animations, and accessibility automatically.
Key Features of SwiftUl

1. Declarative Syntax:

e You declare the Ul using structs and modifiers.

e Example:

Text()
.font(.title)

.foregroundColor(.blue)

2. State-driven:

e Ul automatically updates when your data changes using @State, @Binding, or
@0bservedObject.

3. Cross-platform:

e Same SwiftUl code can run on iPhone, iPad, Mac, Apple Watch, and Apple TV with
minimal changes.

4. Live Preview:

e Xcode provides instant previews of your Ul while coding.

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 206

Differences Between SwiftUl and UIKit

Feature UIKit SwiftUl
Programming Style Imperative (you tell the system how | Declarative (you tell the system
to do things) what you want)
Ul Updates Manual updates required (set Automatic updates using state
properties, call setNeedslLayout) bindings
Cross-platform iOS only i0S, iPadOS, macOS,
watchOS, tvOS
View Hierarchy Views are classes (UIView), need Views are structs (View),
manual management lightweight and value types
Animations Manual (UIView.animate) Built-in with simple modifiers
(withAnimation)
Learning Curve Mature, extensive documentation, Newer, simpler syntax, but
more boilerplate limited legacy support

Q2: Explain the SwiftUl view lifecycle.

Unlike UIKit, SwiftUl doesn’t have explicit lifecycle methods like viewDidLoad or
viewWillAppear. Instead, it is state-driven and declarative, and the system decides when
to create, update, or destroy views.

1. View Creation

e SwiftUl views are structs, not classes.
e Whenever the state changes, SwiftUl recreates the view struct.

e The system diffs the new view with the previous one to update only what changed
(efficient rendering).

2. Body Evaluation

e The body property is re-evaluated whenever state changes.

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 2 O 7

Example:

ContentView: View {
@State counter

body: some View {
VStack {
Text(

Button() {
counter +=

e Pressing the button updates counter, which triggers body re-evaluation.

3. View Updates

e SwiftUl only updates what has changed in the UI.

e This is called diffing—the framework compares old and new views and applies minimal
changes.

4. onAppear & onDisappear

e For actions that need to run when a view appears/disappears, use:

Text()

.onAppear { print(
.onDisappear { print(

5. State-driven Lifecycle

e The view lifecycle is completely driven by state changes.
e Views don’t persist in memory unless referenced; they’re recreated as needed.
6. Environmental & Observable Objects
e Views can subscribe to @0bservedObject, @StateObject, @EnvironmentObject.

e When data in these objects changes, SwiftUl triggers a view refresh automatically.

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 208

Q3: What are ViewBuilder and @ViewBuilder used for?

ViewBuilder:
e ViewBuilder is a special type of function builder in SwiftUI.

e It allows you to combine multiple views inside a closure and return them as a single
view.

e Without ViewBuilder, you'd have to wrap everything manually, which would be messy.

Example:

VStack A
Text(

Text (

Here, the closure after VStack { ... } uses @ViewBuilder under the hood, so you can
write multiple views without wrapping them in an array.

@ViewBuilder:
e (@ViewBuilder is an attribute you put on a function parameter or property.

e |t tells SwiftUl: “This closure will return multiple views, and I'll combine them into one
using ViewBuilder rules.”

Example:

MyCustomView<Content: View>: View {
content: () -> Content // normal closure

body: some View {
VStack {

content()

Q4: What does the @main attribute do in a SwiftUl app?

The @main attribute in SwiftUl marks the entry point of your app.

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 209

8. Networking in iOS

Q1: What is URLSession? How is it different from the deprecated
NSURLConnection?

e URLSession is Apple’s high-level networking APl used to make HTTP requests (GET,
POST, etc.), download/upload files, and manage background transfers.

e It's built on top of lower-level sockets but provides an easy, modern, async-friendly

API.
e It supports:
o Data tasks — simple requests (e.g., fetch JSON).
o Download tasks — large files (auto-saves to disk).
o Upload tasks — send files.
o Background tasks — run even if the app is suspended.

Difference between URLSession and NSURLConnection

Apple deprecated NSURLConnection in favor of URLSession. Here’s why:

Feature NSURLConnection URLSession

API Style Older, delegate-heavy Modern, supports completion handlers +
async/await

Background X Not supported Built-in with
Transfers URLSessionConfiguration.background
Task Types Limited (basic requests Multiple: dataTask, downloadTask,
only) uploadTask, streamTask
Efficiency Less efficient, no More efficient, configurable caching, cookies,
fine-grained config timeouts
Reusability One connection per Sessions can be reused across multiple tasks
request

Current Status | Deprecated since iOS 9 Standard networking API in iOS, macOS,
watchOS, tvOS

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 322

11. Dependency Management
Q1: What is Swift Package Manager? What advantages does it
have over other dependency managers?
e |t's Apple’s official tool for managing dependencies and sharing code.
e Built directly into Xcode and the Swift toolchain.

e Lets you add, update, and use libraries without needing extra tools like CocoaPods or
Carthage.

You describe your package in a Package . swift file, and SPM handles downloading,
compiling, and linking everything for you.

Advantages of SPM over other dependency managers
1. Official and Native
e Built by Apple, fully supported in Xcode.

e No need to install extra tools (unlike CocoaPods or Carthage).
2. Lightweight & Fast
e Direct integration with the Swift compiler.
e Faster dependency resolution and build times compared to CocoaPods.
3. Cross-Platform
e Works not only for iOS/macOS but also for Linux and server-side Swift projects.
e CocoaPods and Carthage are mostly iOS/macOS focused.
4. Simple Setup

e Just add dependencies via Xcode’s “Swift Packages” menu or edit Package . swift.

e No messing around with Xcode project files (CocoaPods modifies them).

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 42 1

5. No Extra Files

e Doesn’'t generate bulky Pods directories or . xcworkspace.

e Keeps your repo cleaner.
6. Better Git Integration

e Dependencies are fetched directly from Git repositories.

e Supports versioning using semantic versioning (1.2 .3).
7. Future Proof

e Apple continues to improve SPM (e.g., binary dependencies, resources support).

e More and more third-party libraries are shifting to SPM-first.

Q2: What’s the difference between .library() and
.executable() products?

When you define a Swift package in Package.swift, you specify products.
Products are what your package actually exposes to the outside world (like apps or other
packages).

There are mainly two kinds: library and executable.
.library() Product

e Whatitis:
A collection of Swift code that can be reused by other packages or apps.

e Purpose:
To provide reusable functionality (e.g., helper functions, Ul components, networking
layer).

e Output:

Doesn’t run by itself, it just gives you Swift modules/frameworks to import.
.executable() Product

e Whatitis:
A Swift program that can be run directly (like a command-line tool or even the main

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 422

17. DevOps for iOS Developers
Q1: What is Mobile DevOps? How is it different from traditional
web DevOps?

e Mobile DevOps is the practice of applying DevOps principles specifically to mobile
app development.

e |t focuses on continuous integration, delivery, and monitoring for mobile apps across
iOS and Android platforms.

e The goal is to release high-quality apps faster, with automated testing, deployment,
and feedback loops.

Key Components of Mobile DevOps

Component Description

Continuous Integration (Cl) Automatically build and test apps whenever code changes
are committed.

Continuous Delivery / Automate deployment of apps to testers (TestFlight, Play
Deployment (CD) Store beta) or production.
Automated Testing Unit, Ul, and integration tests run automatically to catch
bugs early.
Monitoring & Analytics Track app crashes, performance, and user behavior in
real-time.
Release Management Plan releases, manage versions, and handle app store

submissions efficiently.

How Mobile DevOps Differs from Traditional Web DevOps

Aspect Mobile DevOps Web DevOps
Deployment App Store (i0S) / Play Store Web servers / cloud platforms
Target (Android)

Release Cycle Longer due to app store review and | Faster, can push live immediately
approvals

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 50 7

Testing Multiple devices, OS versions, Browsers & server environments
Environment screen sizes
Installation User must download/update app Users access via browser, no
install needed
Monitoring Crash reporting, app performance Server logs, uptime, response
metrics times

Key Challenges in Mobile DevOps
1. Multiple Platforms
e iOS and Android need separate pipelines and tools.
2. App Store Constraints
e Deployment is slower due to review processes.
3. Device Fragmentation
e Need to test on different devices, OS versions, screen sizes.
4. Version Management

e Manage multiple app versions simultaneously for testing and production.

Q2: What is the difference between DevOps, Cl, and CD in the
context of mobile development?
1. DevOps in Mobile Development

e DevOps is a culture and set of practices that combines development and operations
to deliver apps faster and more reliably.

e In mobile, DevOps covers everything from code commits to deployment and
monitoring on iOS and Android.

e Goals: automation, collaboration, feedback loops, and faster releases.

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 508

18. Scenario-Based Interview Questions

Q1: Users report that your app crashes randomly on older
devices while scrolling a UITableView. How would you
investigate and resolve this crash?

Reproduce the crash

e Test on older devices or low-memory simulators to see the problem firsthand.
Check crash logs

e Use Xcode Organizer, Crashlytics, or Sentry to get stack traces and error details.
Identify memory issues

e Use Instruments — Allocations & Leaks to detect high memory usage, leaks, or retain
cycles.

Optimize table view performance

e Reuse cells properly with dequeueReusableCell.
e Avoid heavy computations or image processing in cel1ForRowAt.

e Load images asynchronously or lazily.
Fix retain cycles

e Check closures capturing self strongly and use [weak self] or [unowned self]
where needed.

Test thoroughly

e Verify on multiple devices, iOS versions, and simulate memory warnings to ensure the
fix works.

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 530

Q2: Your iOS app takes ~8 seconds to launch, affecting user
experience. How would you optimize app launch time?

Measure launch time

e Use Instruments — Time Profiler or os_signpost to identify slow parts.
Move heavy work off main thread

e Run network calls, database queries, or JSON parsing asynchronously.
Lazy load resources

e Load images, views, or data only when needed instead of during launch.
Optimize storyboard/XIB

e Reduce deep view hierarchies and unnecessary Ul elements.

e Consider lightweight views or SwiftUl for faster layout rendering.

Cache frequently used data

e Use UserDefaults, Core Data, orlocal files to avoid fetching from network
repeatedly.

Preload only essential resources

e Delay non-critical initializations to after app launch.

Q3: A view controller is not deallocated after navigation, causing
memory leaks. How would you handle this?

Detect retain cycles
e Use Xcode Memory Graph Debugger or Instruments — Leaks.
Identify strong reference cycles

e Look for closures or delegates holding a strong reference to self.

Created By : Anand Gaur

(Mobile Tech Lead - + 91 9807407363) 53 1

